Department of Mathematics
 Jhargram Raj College
 Jhargram

Class: Mathematics (Honours) Sem - 2

Tutorial Class: 01
Topic: Sequence
Date: 06.03.2019

1. Let $a \geq 1$ be a real number and define $\left\{x_{n}\right\}$ by $x_{1}=a \& x_{n+1}=1+\ln \left\{\frac{x_{n}\left(x_{n}{ }^{2}+3\right)}{3 x_{n}{ }^{2}+1}\right\} \forall n \geq 1$. Show that $\left\{x_{n}\right\}$ is convergent. Find its limit.
2. A sequence $\left\{a_{n}\right\}$ is defined as $0<a_{1}<1 \&\left(2-a_{n}\right) a_{n+1}=1 \forall n \geq 1$. Show that $\left\{a_{n}\right\}$ conyerges to 1 .
3. A sequence $\left\{x_{n}\right\}$ is defined as $x_{n+1}=x_{n}\left(2-x_{n}\right) \forall n \geq 1$. where $0<x_{1}<1$. Show that $\left\{x_{n}\right\}$ is convergent.
4. A sequence is defined as $=\sqrt{\left[\frac{a b^{2}+x_{n}^{2}}{a+1}\right]}$ where $x_{1}=a(>0) \& b>a$. Show that $\left\{x_{n}\right\}$ is convergent in \mathbb{R}.
5. If $\left\{V_{n}\right\}$ is a sequence of positive numbers such that $V_{n+1}{ }^{2}=\frac{2 V_{n}}{1+V_{n}}$. Show that

$$
V_{n} \rightarrow 1 \text { as } n \rightarrow \infty .
$$

6. A sequence $\left\{x_{n}\right\}$ is defined as $x_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln n$. Show that $\left\{x_{n}\right\}$ is convergent.
7. Let $0<\alpha<1$. Let the sequence $\left\{x_{n}\right\}$ be defined by $x_{n+1}=\alpha x_{n}+(1-\alpha) x_{n-1}$. Show that $\left\{x_{n}\right\}$ is convergent. Find the limit of this sequence in terms of α, x_{0}, x_{1}.
8. Let $a \in \mathbb{R}^{+}$. The sequence $\left\{x_{n}\right\}$ in \mathbb{R} is defined by the recurrence relation $x_{n+1}=a+x_{n}{ }^{2} \forall n \geq 0 \& x_{0}=0$. Find NASC on ' a ' in order that $\lim _{n \rightarrow \infty} x_{n}$ should exist.
9. If $\sqrt[n]{\alpha_{n}}=\left\{\frac{1}{2}(\sqrt[n]{a}+\sqrt[n]{b})\right\} \forall n \in \mathbb{N}$. Show that $\alpha_{n} \rightarrow \sqrt{a b}$ as $n \rightarrow \infty . a, b>0$.
10. The sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{n+1}=a_{n}+\frac{(-1)^{n}}{2^{n}}, a_{1} \neq \frac{1}{3}$ and $b_{n}=\frac{2 a_{n+1}-a_{n}}{a_{n}} \forall n$. Examine whether the sequences are convergent or not.
11. The Fibonacci numbers $f_{1}^{1}, f_{2} \ldots \ldots$ are defined recursively by $f_{1}=1, f_{2}=2 \& f_{n+1}=f_{n}+f_{n-1} \forall n \geq 2$. Show that $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}$ exists and evaluate the limit. Is $\left\{f_{n}\right\}$ is convergent, if so find its limit.
12. Let $x \in \mathbb{R} \backslash \mathbb{Q}$ and let $\left\{\frac{m_{\mu}}{n_{\mu}}\right\}$ be a sequence converging to it. Show that $\left\{n_{\mu}\right\} \rightarrow \infty$ as $\mu \rightarrow \infty$.
13. Let $\left\{x_{n}\right\}$ be a sequence in $\mathbb{R} \&$ let $\left\{y_{n}\right\}=x_{n-1}+2 x_{n} \forall n \geq 2 . y_{1}=x_{1}$. Suppose that $\left\{y_{n}\right\}$ converges to $p \in$ \mathbb{R}. Prove that $\left\{x_{n}\right\} \rightarrow \frac{p}{3}$ as $n \rightarrow \infty$.
14. $\forall p, a \in \mathbb{R}^{+}$, Prove that $\lim _{n \rightarrow \infty} \frac{n^{p}}{(1+a)^{n}}=0$.
15. If $x_{1}, x_{2}>0 \& x_{n+2}=\sqrt{x_{n+1} x_{n}}$. Prove that $\left\{x_{n}\right\}$ is composed of two sequences of which one is increasing and the other is decreasing but both of them have the common limit $\left(x_{1} x_{2}{ }^{2}\right)^{\frac{1}{3}}$
16. If $\left\{f_{n}\right\}$ is a sequence of positive numbers such that $f_{n}=\frac{1}{2}\left(f_{n-1}+f_{n-2}\right) \forall n \geq 3$. Show that $\left\{f_{n}\right\} \rightarrow \frac{f_{1}+2 f_{2}}{3}$ as $n \rightarrow \infty$.

Reference:
17. First Course in Real Analysis by Subir Kumar Mukherjee.
