Department of Mathematics Jhargram Raj College Jhargram

Class: Mathematics (Honours) Sem – 2

Tutorial Class: 01

Topic: Sequence

Date: 06.03.2019

1. Let $a \ge 1$ be a real number and define $\{x_n\}$ by $x_1 = a \& x_{n+1} = 1 + \ln\{\frac{x_n(x_n^2+3)}{3x_n^2+1}\} \forall n \ge 1$. Show that $\{x_n\}$ is convergent. Find its limit.

- 2. A sequence $\{a_n\}$ is defined as $0 < a_1 < 1 & (2 a_n)a_{n+1} = 1 \forall n \ge 1$. Show that $\{a_n\}$ converges to 1.
- 3. A sequence $\{x_n\}$ is defined as $x_{n+1} = x_n(2 x_n) \forall n \ge 1$. where $0 < x_1 < 1$. Show that $\{x_n\}$ is convergent. 4. A sequence is defined as $= \sqrt{\left[\frac{ab^2 + x_n^2}{a+1}\right]}$ where $x_1 = a(>0)$ b > a. Show that $\{x_n\}$ is convergent in \mathbb{R} .
- 5. If $\{V_n\}$ is a sequence of positive numbers such that $V_{n+1}^2 = \frac{2V_n}{1+V_n}$. Show that $V_n \to 1$ as $n \to \infty$.
- 6. A sequence $\{x_n\}$ is defined as $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ln n$. Show that $\{x_n\}$ is convergent.
- 7. Let $0 < \alpha < 1$. Let the sequence $\{x_n\}$ be defined by $x_{n+1} = \alpha x_n + (1 \alpha) x_{n-1}$. Show that $\{x_n\}$ is convergent. Find the limit of this sequence in terms of α , x_0 , x_1
- 8. Let $a \in \mathbb{R}^+$. The sequence $\{x_n\}$ in \mathbb{R} is defined by the recurrence relation $x_{n+1} = a + x_n^2 \forall n \ge 0 \& x_0 = 0$. Find NASC on 'a' in order that $\lim_{n \to \infty} x_n$ should exist.
- 9. If $\sqrt[n]{\alpha_n} = \left\{\frac{1}{2}\left(\sqrt[n]{a} + \sqrt[n]{b}\right)\right\} \forall n \in \mathbb{N}$. Show that $\alpha_n \to \sqrt{ab} \text{ as } n \to \infty. a, b > 0$.
- 10. The sequence $\{a_n\}$ is defined recursively by $a_{n+1} = a_n + \frac{(-1)^n}{2^n}$, $a_1 \neq \frac{1}{3}$ and $b_n = \frac{2a_{n+1}-a_n}{a_n} \forall n$. Examine whether the sequences are convergent or not.
- 11. The Fibonacci numbers $f_1, f_2 \dots \dots$ are defined recursively by $f_1 = 1, f_2 = 2 \& f_{n+1} = f_n + f_{n-1} \forall n \ge 2$. Show that $\lim_{n \to \infty} \frac{f_{n+1}}{f_n}$ exists and evaluate the limit. Is $\{f_n\}$ is convergent, if so find its limit.
- 12. Let $x \in \mathbb{R} \setminus \mathbb{Q}$ and let $\{\frac{m_{\mu}}{n_{\mu}}\}$ be a sequence converging to it. Show that $\{n_{\mu}\} \to \infty as \mu \to \infty$.
- 13. Let $\{x_n\}$ be a sequence in \mathbb{R} & let $\{y_n\} = x_{n-1} + 2x_n \forall n \ge 2$. $y_1 = x_1$. Suppose that $\{y_n\}$ converges to $p \in \mathbb{R}$ **R.** Prove that $\{x_n\} \to \frac{p}{3}$ as $n \to \infty$.

4.
$$\forall p, a \in \mathbb{R}^+$$
, Prove that $\lim_{n \to \infty} \frac{n^p}{(1+a)^n} = 0$.

15. If $x_1, x_2 > 0 \& x_{n+2} = \sqrt{x_{n+1}x_n}$. Prove that $\{x_n\}$ is composed of two sequences of which one is increasing and the other is decreasing but both of them have the common limit $(x_1x_2^2)^{\frac{1}{3}}$.

16. If $\{f_n\}$ is a sequence of positive numbers such that $f_n = \frac{1}{2}(f_{n-1} + f_{n-2}) \forall n \ge 3$. Show that $\{f_n\} \to \frac{f_1 + 2f_2}{3}$ as repared by Sayantan Roy, Mareran Rai College $n \to \infty$.